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a b s t r a c t

We develop a mathematical model of a microgyroscope whose principal component is a

rotating cantilever beam equipped with a proof mass at its end. The microgyroscope

undergoes two flexural vibrations that are coupled via base rotation about the

microbeam longitudinal axis. The primary vibratory motion is produced in one

the proof mass. The microbeam angular rotation induces a secondary vibration in the

orthogonal (sense) direction actuated by a second DC voltage. Closed-form solutions are

developed for the linearized problem to study the relationship between the base

rotation and gyroscopic coupling. The response of the microgyroscope to variations in

the DC voltage across the drive and sense electrodes and frequency of excitation are

examined and a calibration curve of the gyroscope is obtained analytically.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Inertial sensors are extensively used in automotive, military, and aerospace systems [1]. Advances in micromachining
have made it possible to produce precision inertial sensors at low cost. For many of these applications, sensors are required
to be cost-effective, small, and their power consumption must be suitable for battery operated devices. Micromachined
devices can fulfill these requirements.

Microgyroscopes have been the subject of intensive research in the past few years [2–5]. Their objective is to measure
the angular displacement or its rate of change over time. Miniaturizing these devices has advantages because conventional
gyroscopes are large in size, wear out after several thousand hours of use, and are expensive. Further, miniaturized systems
can be easily integrated into microelectronics.

Vibrating microgyroscopes include tuning forks, vibrating beams, and vibrating shells [1]. They work by making use of
the Coriolis force. During operation, an alternating force oscillates the proof mass of the microgyroscope. When this
oscillating body (drive oscillations) is placed in a rotating frame, the Coriolis force produces secondary oscillations (sense
oscillations), which are orthogonal to the driven oscillations. The angular velocity of the rotating frame can be estimated by
analyzing the sense oscillations [6].

Among the various kinds of microgyroscopes, suspended vibratory types are dominant because they are more suitable
for batch fabrication in current micromachining processes. Miniaturized gyroscopes differ in the actuation principle
(electrostatic, electromagnetic, or piezoelectric) and the transduction principle used to generate the read out signal from
the sense oscillations (capacitive, piezoelectric, piezoresistive, electromagnetic, or optical). However, a large number of
ll rights reserved.
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microgyroscopes reported in the literature use electrostatic actuation and detection [7]. The complicated dynamics and
extremely small detection signals have made gyroscopes one of the most challenging devices to be realized in
micromachining. In fact, electrostatic forces can induce the ‘pull-in’ instability where the restoring forces are unable to
resist the capacitive forces, resulting in the electrodes collapsing onto each other.

A large number of sophisticated designs [8,9] have been developed to increase the sensitivity and reduce the cost of
microgyroscopes. Hong et al. [10] and Jeong [11] increased the sensitivity of MEMS vibratory gyroscopes by matching the
natural frequencies of the drive and sense directions and exciting the drive oscillations near resonance. Jeong [11] found that
the difference in the natural frequencies of the drive and sense directions and the quality factor are the most important factors
in determining the sensitivity of this type of microgyroscopes. Acar and Shkel [8] eliminated the need for matching the natural
frequencies of the drive and sense direction by driving a gimbal-type torsional MEMS gyroscope at the anti-resonance
frequency of the drive mode, which is designed to be equal to the resonance frequency of the sense direction.

Esmaeili et al. [12] developed the characteristic equation of a microgyroscope made of a cantilever beam and a tip mass.
The beam was assumed to vibrate in two orthogonal planes subject to a base rotation about its longitudinal direction. They
used the Euler–Bernoulli theory to represent the microbeam and a linear approximation to represent the electrostatic force
and neglected the effects of torsion and rotary inertia. Bhadbhade and Jalili [13], and Bhadbhade et al. [14] examined
coupled flexural-torsional vibrations of a beam gyroscope undergoing bending in one plane and twisting due to a rotational
base motion, ignoring the rotary inertia effects. They derived the coupled governing equations of motion, solved them
using an assumed mode approach, and analyzed the relationship between the base rotation and the gyroscopic coupling.

In the present work, we focus on modeling and predicting the performance of a microgyroscope consisting of a micro
cantilever beam with a rigid proof mass at its end. The rigid mass is coupled to two electrodes in the drive and sense
directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in one direction, which
induces vibrations in an orthogonal direction due to the rotation about the microbeam longitudinal axis. The electrode
placed at the sense direction is then used to measure the induced motions and extract the underlying angular speed.

2. Modeling of beam microgyroscopes

The beam is attached to a moving base as shown in Fig. 1. It has a uniform square cross-section, a length L, and a mass
per unit length m. A tip mass M is attached to the right end of the beam. The beam displacement is made of two bending
components, w(x,t) and v(x,t), along the z and y directions, respectively. Equal DC voltages are applied in both directions.
Hence, the beam undergoes only flexural displacements. We follow Nayfeh and Pai [15] and express the total kinetic
energy as
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Fig. 1. Schematic of a cantilever beam with a tip mass under base rotational motion.
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where J¼
R

Ary2 dA¼
R

Arz2 dA ðm¼ rA, wL=w(L,t), and vL=v(L,t). Here, the prime and the dot denote the derivatives with

respect to x and t, respectively.
The total potential energy of the beam microgyroscope subjected to electrostatic forces in the drive and sense directions

is given by

V ¼
1

2
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0
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where (Aw,dw) and (Av,dv) are the area and gap distance of the drive and sense capacitors, respectively.
The equations of motion governing the flexural vibrations of the system can be derived using Hamilton’s principle

Z t2

t1

ðdK�dVÞdt¼ 0 (3)

This leads to the equations of motion

EIviv
�mvO2

þ2Jv00O2
�2m _wOþm €v�mw _O� _OJw00�J €v 00 ¼ 0 (4)

EIwiv
�mwO2

þ2Jw00O2
þ2m _vOþm €wþmv _O� €OJv00�J €w 00 ¼ 0 (5)

and associated boundary conditions at x=0
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EIv00 ¼ 0, EIw00 ¼ 0 (9)

It follows from Eqs. (4)–(9) that the drive and sense bending motions are coupled via the base rotation. The angular
velocity and acceleration give rise, respectively, to gyroscopic and inertial couplings between the two vibration modes.

Next, we introduce the following set of parameters:
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Then, in nondimensional form, the equations of motion and associated boundary conditions become
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where the hats have been dropped for notation convenience and linear damping terms are added to the equations
of motion. A common damping coefficient c is used for both directions. We note that the electrostatic forcing terms in
Eqs. (13) and (14) are nondimensional and the voltages VDC and vAC are kept dimensional throughout the following
analysis.

3. Static deflection

We denote the static deflections in the sense and drive directions by vs(x) and ws(x), respectively. The static equilibrium
equations are uncoupled and hence are treated separately. In the sense direction, the static configuration of the microbeam
is governed by

viv
s �O

2vsþ2JO2v00s ¼ 0 (16)

subject to the boundary conditions
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The general solution of Eq. (16) can be expressed as

vsðxÞ ¼ c1ea1xþc2e�a1xþc3ea2xþc4e�a2x (18)
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The constants ci are determined by using the boundary conditions in Eq. (17).
We consider a proof mass of thickness 14mm (Mr=1) and identical sense and drive capacitors with dv ¼ dw ¼ 2mm and

Aw ¼ Av ¼ 392mm2. Other dimensions and material properties of the polysilicon microgyroscope are presented in Table 1.
This symmetric configuration results in the static deflections in the drive and sense directions being identical ws(x)=vs(x)
for the same DC voltage. This is a desirable outcome since it matches the static deflections on the sense and drive
directions, thereby eliminating spurious torsional motions, and matches the natural frequencies in the sense and drive
directions, thus amplifying the output motions.

Fig. 2 displays variation of the maximum static deflection vs(1)=vM in the sense and drive (ws(1)=wM) directions with
the DC voltage VDC. The resulting curve is typical for electrostatic actuators with lower and upper branches of solutions
corresponding, respectively, to stable and unstable equilibria of the microbeam. The pull-in voltage is 5.1221 V and the
associated deflection (range of travel) is 0.3333.

4. Small motions of the microgyroscope

Microgyroscopes are designed to meet the following performance specifications:
�
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It must amplify the motions in the sense direction to enable detection and measurement of the output signal.

�
 It must minimize the voltage requirements in both of the drive and sense directions, thereby minimizing the leakage

current and the sensor drift.
le 1
rogyroscope parameters.

ymbol Description Numerical values

Beam length (mm) 400

Density (kg/m3) 2300

Young’s modulus (N/m2) 160�109

Mass per unit length (kg/m) 1.803�10�8

Tip mass (kg) 7.2128�10�12

Beam width (m) 2.8�10�6

Beam thickness (m) 2.8�10�6
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Fig. 2. Maximum deflection versus the applied DC voltage VDC (V) for the drive direction.
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We derive an analytical solution of the governing equations of motion to study the dynamic behavior of the gyroscope with
a view to optimize its response to meet these design criteria.

The gyroscope is directly excited by a combined DC and AC voltage applied to the proof mass in the drive direction. The
AC forcing vAC ¼ VACcosðOetÞ is tuned to excite the gyroscope near one of its natural frequencies to satisfy the criteria listed
above. We decompose the gyroscope response into static and harmonic components representing motion with the
excitation frequency Oe; that is,

vðx,tÞ ¼ vsðxÞþðfvðxÞe
iOetþccÞ (19)

wðx,tÞ ¼wsðxÞþðfwðxÞe
iOetþccÞ (20)

where cc stands for the complex conjugate of the preceding term. Expanding Eqs. (10)–(15) for small motions around vs(x)
and ws(x), substituting Eqs. (19) and (20) into the result, using Eqs. (16) and (17), assuming a constant base angular velocity
O, and dropping the nonlinear terms, we obtain
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f00vð1Þ ¼ 0, f00wð1Þ ¼ 0 (24)

fvð0Þ ¼ 0, fuvð0Þ ¼ 0, fwð0Þ ¼ 0, fuwð0Þ ¼ 0 (25)

where the quality factor Q of the microgyroscope is used to determine the damping coefficient from c¼o0=Q and o0 is the
first natural frequency.

Assuming that the spatial functions fvðxÞ and fwðxÞ are of the form
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we obtain the following system of equations:
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Eq. (27) has nontrivial solution if and only if the determinant of the matrix [si
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general solutions can be written as
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We substitute Eq. (28) into the boundary conditions (22)–(25) and obtain the linear algebraic system
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h i
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Bi. Hence, the beam deflections can be expressed as
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We note that the eigenvalue problem can be tackled in a similar way as described above except we replace the
excitation frequency Oe by the frequency o, set c=0, and drop the AC component in Eq. (23). Therefore, the right-hand side
of Eq. (29) becomes equal to zero and then, the natural frequencies are obtained by setting the determinant jFðc¼ 0Þj equal
to zero. Fig. 3 shows variation of the first natural frequency with the DC voltage for three values of the tip-mass M. The
natural frequency decreases as the electrostatic force increases and approaches zero as pull-in develops. The unactuated
(VDC=0 V) natural frequency of the microgyroscope decreases and the curvature of the o�VDC curve increases as the
tip-mass increases. However, the tip-mass has no effect on the pull-in voltage because it does not contribute to the
mechanical restoring force of the beam.

We use the analytical solution given by Eqs. (30) and (31) to calculate the oscillations in both of the drive and sense
directions for the three loading cases listed in Table 2. These cases were chosen to examine the effects of the excitation
frequency approaching the natural frequency and variation in the common DC voltage applied to the drive and sense
electrodes.
4.1. Dynamic amplification

In Fig. 4, we display variation of the microbeam maximum tip displacement with the excitation frequency Oe for
loading case LC2 and different base rotation velocities. Dynamic amplification can be seen in the peak of the displacement
realized in the neighborhood of the natural frequency of the gyroscope. Clearly, the amplitude of the motion in the sense
direction increases with the angular speed O.

We examine the effect of varying the tip mass on the frequency response curves of loading case LC2. The resulting
curves are shown in Figs. 5(a) and (b). Decreasing the tip mass increases the resonance frequency and reduces the
amplitudes of the motions along the drive and sense directions. Therefore, considering a larger tip mass may improve the
performance of the microgyroscope.
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Table 2
Loading cases.

Loading case VDC (V) VAC (V) o0

LC1 3.8 0.1 1.3717

LC2 4 0.1 1.33882

LC3 4.1 0.1 1.3152

1.32 1.34 1.36 1.38 1.40

0.15

0.20

0.25

0.30

v m

100 rad s

50 rad s

20 rad s

1.32 1.34 1.36 1.38 1.40

0.2

0.3

0.4

0.5

w m

100 rad s

50 rad s

20 rad s

Fig. 4. The frequency-response curves of the gyroscope in the (a) sense and (b) drive directions for different base rotation velocities (LC2, c=0.065).
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4.2. Dependance of the system response on the DC voltage

The microbeam is excited with different DC voltages for a constant base rotation velocity (O¼ 20 rad=s). Fig. 6 shows
variation of the microbeam tip displacement with the DC voltage. As expected, the response amplitudes in both directions
increase as the DC voltage increases.

4.3. Calibration curve of the microgyroscope

We present in Fig. 7 variation of the the maximum displacements in the two directions with the rate of rotation about
the longitudinal axis of the microgyroscope, for different loadings and an excitation frequency of Oe ¼ 1:3. We note that the
effect of the base angular speed on the drive direction is insignificant, but its effect on the sense direction is much more
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noticeable. The amplitude of motion in the sense direction increases linearly with the angular speed, which is encouraging,
because it indicates that capacitive sensing of these motions can produce an easy measure of the angular speed. Moreover,
Fig. 7 indicates that the higher the sense direction amplitude is, the more sensitive the microgyroscope becomes. Therefore,
by setting the excitation frequency close to the first natural frequency and using an appropriate DC voltage, one can extract
the base angular speed from the motion along the sense direction.

To gain more insight into the combined effect of the DC voltage and the base rotation, we generate 3-D plots (see Fig. 8)
showing variations of the amplitude of the tip mass oscillations in both of the drive and sense directions with the DC
voltage and the base angular speed. These plots reveal that sensitivity of the microgyroscope to the base rotation is more
significant as the oscillation amplitude along the sense direction is increased.
5. Conclusion

We consider modeling and performance of a vibrating beam microgyroscope consisting of a rotating cantilever
microbeam with a square cross-section and a tip mass at its end. The microbeam is actuated by a pair of DC voltage and AC
voltages. Equal DC voltages are applied in the drive and sense directions and a symmetric microstructure is chosen so that
the static deflections in both directions are identical for the purpose of avoiding torsional motion, matching their primary
resonance, and thus amplifying the output amplitude. The system governing equations are solved analytically to study the
relationship between the base rotation and gyroscopic coupling. The effects of the input excitation parameters on the



0 20 40 60 80 100
0.1

0.12

0.14

0.16

0 20 40 60 80 100

0.2

0.25

0.3

0.35

0.4

LC1
LC2
LC3

Fig. 7. Variation of the maximum dynamic response with the base rotation: (upper plot) sense mode and (lower plot) drive mode (VAC=0.1 V

and Oe ¼ 1:3).

vM

0

50

100

2

3

4

V DC

0.00

0.05

0.10

0.15

wM

0

50

100

2

3

4

V D
C

0.0
0.1
0.2
0.3

Fig. 8. Effect of the base rotation and the DC voltage VDC (V) on the maximum dynamic response: (a) in the sense direction and (b) in the drive direction

(Oe ¼ 1:3).

M. Ghommem et al. / Journal of Sound and Vibration 329 (2010) 4970–49794978
performance of the gyroscope are investigated. We conclude that a large DC voltage (below pull-in) and an excitation
frequency close to the fundamental natural frequency enhance sensitivity of the microgyroscope to base rotations.
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